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We report direct numerical simulations of incompressible unsteady open-channel flow. 
Two mechanisms of turbulence production are considered: shear at the bottom and 
externally imposed stress at the free surface. We concentrate upon the effects of mutual 
interaction of small-amplitude gravity waves with in-depth turbulence and statistical 
properties of the near-free-surface region. Extensions of our approach can be used to 
study turbulent mixing in the upper ocean and wind-sea interaction, and to provide 
diagnostics of bulk turbulence. 

1. Introduction 
Free-surface turbulent flows are important in physical oceanography, atmospheric 

science, civil engineering, and industrial technology. From the point of view of 
fundamental research, free-surface turbulence is a problem which bridges surface wave 
phenomena and fully developed hydrodynamic turbulence. Also, the theory of surface 
waves has played a central role in nonlinear science and has been a source of many 
seminal analytical and computational ideas. Usually, studies of surface wave 
phenomena have concentrated on the behaviour of non-dissipative, although highly 
dispersive and nonlinear, ensembles of waves. In this case, potential flow is a good 
approximation since molecular viscosity is important only within a thin boundary layer 
1, = 2 ~ ( v ~ / g ) l ’ ~  which is normally smaller than all the characteristic scales such as the 
capillary length or system dimensions. It is usually assumed that, inside this viscous 
layer, large vorticity is generated. These vortex sheets move with the surface but play 
a rather minor role in the large-scale surface dynamics. Their role, however, may be 
important in small-scale ocean-air interaction, e.g. short gravity waves, capillary waves 
and wind-generated ripples. At the same time, dissipation and vorticity generation 
phenomena are essential within the turbulent fluid. 

In this paper, we shall concentrate upon the effects of the mutual influence of 
random surface waves and statistical properties of the near free-surface region in fully 
developed turbulent flow. To date, there is no comprehensive strong coupling theory 
of these phenomena. The method used here is that of direct numerical simulation 
(DNS). The success of early moderate Reynolds number DNS experiments for channel 
flows with rigid walls encourages the present study of open-channel flow with gravity 
waves on the surface. 

At the present time, rather extensive experimental studies of turbulent open channels 
exist (Ueda et al. 1977; Nezu & Rodi 1986; Kirkgoz 1989), as well as semi-empirical 
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theories and results of K-6 and Reynolds stress modelling (Gibson & Rodi 1989; Celik 
& Rodi 1984; Swean et al. 1991). The advantage of the DNS approach taken here is its 
independence of any of the ad hoc assumptions often necessary for theory to progress 
and its greater flexibility in matching experimental conditions. The disadvantages of 
DNS, at least with our current approach, are mostly related to the fact that we are 
restricted to consideration of very small-amplitude surface waves, not to mention the 
usual restrictions on Reynolds number. In fact, as will become clear later, we can 
consider only wave heights which are smaller than the boundary layer thickness I,, and 
in this sense, the waves are 'infinitesimally' small. However, we believe that it is 
important to develop a DNS technique which handles these open surface flow 
phenomena. Possible modifications of our approach could extend its applicability 
range and achieve a level of description of practically important flows. Here we will 
concentrate on the fundamental, and unfortunately not so practical, aspects of the 
problem. As a natural first step we start our studies with channel flow bounded by a 
rigid wall from below and having an open upper surface. Some DNS calculations of 
open-channel flow have already been performed by Handler et al. (1991), Leighton et 
al. (1991) and Swean et al. (1991). However, in those early works only the case of zero 
Froude number was considered. The numerical scheme used in our simulations 
coincides in the case of zero Froude number with that of Swean et al. (1991). In our 
work we mostly concentrate on the study of spectral properties of the near-free-surface 
region for non-zero Froude number. 

This paper is organized as follows. In 92, we formulate our approach to the problem 
and then in 9 3  describe the numerical scheme. In 94, we present the results of 
simulations of flows with two different mechanisms of turbulence production: shear at 
the bottom and externally imposed stress at the free surface. In 95, we discuss the 
applications of our results to problems of physical oceanography, as well as possible 
extensions of our approach. 

2. Open channel with random waves at the surface 
We solve the three-dimensional Navier-Stokes equation for incompressible flow : 

where v is the velocity field, p is the pressure, 7~ = p / p + ; v 2 ,  v is the kinematic viscosity 
and p is the density of fluid. The boundary conditions are 

where 7ii = paij + vp(ai vi + a, vi) are the internal and external components of the stress 
tensor respective to the fluid, and ni is the normal to the free surface (and summation 
over repeated indices is implied). The system (l), (2) is closed using the equation for the 
free-surface height h : 

Here an index denoted by the Greek letter a corresponds to a direction in the free 
surface (the x, y-plane) and a, stands for the differentiation in that direction. The rigid 
wall is located at z = -;H, the upper boundary of the physical domain is given by 
z = :H+ h(x,  y, t),  and the subscript fs designates values taken at the free surface. 

DNS of fully developed turbulent flows in channels is usually performed using high- 
resolution spectral methods. To calculate a flow bounded between two rigid walls, the 

ath+vaaah = Vnormall fs .  (3) 
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flow is reproduced by a Fourier spectral series in the x, y-direction and by a Chebyshev 
polynomial representation in the z-direction. The latter concentrates collocation points 
towards the walls, providing high resolution of boundary layers. However, in an open 
channel the upper surface is curved and time dependent, which complicates the use of 
spectral methods. One possible approach is to give up the high resolution in the z- 
direction provided by using the Chebyshev polynomials. However, we believe that it is 
essential to ensure proper resolution of near-free-surface boundary layers, especially in 
the case where the turbulence is generated by an oscillating stress imposed at the free 
surface. 

The approach used here is based upon linearization of the boundary conditions at 
the free surface. Then the boundary conditions (2) are adjusted to those imposed at the 
unperturbed surface z = !$I. Obviously, the ability to describe effects of nonlinear self- 
interactions of surface waves is sacrificed. On the other hand, such an approach retains 
the ability to use the Chebyshev spectral method in the z-direction to achieve high 
resolution. The boundary conditions then take the form 

(4) 1 a, h + a,(hvh = vz, 

P 4 a a  21, + a z  03 = 7azlest, 

gh- g* Ah + 2vaz vz = (PIP)  - P e s t l P ,  

where g is the gravitational constant, cr* = (crlp) is the surface tension, ?-,,lest and pest 
are the external stress and pressure, respectively. All terms in (4) are evaluated at 
h(x,  y, t )  = 0; again the index a means that only horizontal components are used. The 
only nonlinear term retained in (4) is the term a,(hv,) responsible for the convection of 
the free surface by the horizontal velocity. It turns out that in our formulation the 
convective term is of the same order of magnitude as vz though a, h is small. Equations 
(1) and (4) represent the final formulation of the boundary problem that we use here 
to describe open-channel flow. In linear approximation, this system reproduces both 
the dispersion relation of surface waves and the Helmholtz instability at the surface. 
Interaction effects are accounted for by the nonlinearity of the Navier-Stokes 
equation. 

What are the applicability limits of our approach? First, a linear analysis (Landau 
& Lifshitz 1987) shows that, for each spatial harmonic with a wavenumber k and the 
amplitude h, linear approximation of the boundary conditions is only valid when 
h d l,, where 1, = ( 2 ~ / Q ( k ) ) ~ / ~  and Q(k)  = (gk+ cr* k3)ll2. It will be seen later that the 
Fourier spectrum of h(k)  is rather steep and the condition kh(k)  d 1, is automatically 
satisfied whenever it is valid at the smallest wavenumbers. This leads to the estimate for 
the flow ‘integral’ Froude number (here and later cr* = 0 is assumed) 

Here this integral Froude number and the Reynolds number Re = UH/v  are defined 
using the centreline velocity U and the channel height. Deriving ( 5 )  we assumed that 
h z u:,,/2g. We also assumed that in the range of flow Reynolds numbers of interest 
here, Re z 103-104, the characteristic r.m.s. velocity at the surface can be heuristically 
estimated as urms !z IO-lU (Kim, Moin & Moser 1987). 

At the same time it would not be satisfactory to consider only waves that are shorter 
than the viscous sublayer width 1, and whose amplitude is smaller than 1,. The 
dissipation length of waves 1, is defined as the scale where the frequency of the wave 
is equal to the wave decay rate (see (17) below). If that were the case, our analysis 
would only be of general methodological interest and not applicable to the description 
of real phenomena in water waves. Indeed, in water at normal conditions, 1, z lo-’ cm, 

4 = U/(gH)1/2  4 10/Re1/3. ( 5 )  
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whereas the capillary length d = (2c,/g)lI2 = 10-1 cm. It is clear that any length scales 
smaller than d are not of interest for engineering and oceanographic applications 
because they are effectively damped by capillary effects. 

The condition for the existence of wave motion is 1, < h, resulting in the inequality 

l$ 2 10/Re'I2. (6 )  

It is clear that as Re+ 00 there exists a wide range of Froude numbers where both 
inequalities (5 )  and (6)  hold. It is worth mentioning that in a typical flow of engineering 
interest ( H  z 1 m, U z 0.1 m s-', R e x  lo4, 4 z 10-l) the condition ( 5 )  is satisfied. This 
is also the case for the typical laboratory setup in the free-surface-flow studies of Ueda 
et al. 1977. 

3. Numerical procedure 
The numerical procedure used here is similar to that used by Kim et al. (1987) for 

rigid-channel flow. A spectral method, with Fourier series in the streamwise (x) and 
spanwise ( y )  directions, and Chebyshev polynomial expansion in the normal direction 
(z), is employed spatially. A conventional time-splitting scheme is used to separate 
nonlinear and viscous time steps. However, the solution for incompressibility and 
viscosity is done within the same step by solving a fourth-order equation for the normal 
velocity and a second-order equation for the normal component of vorticity. 
Streamwise and spanwise velocity components are recovered from the incompressibility 
condition. If we define the Reynolds number as Re = UH/v ,  the convective term as 
Oi = [u x 0.4 and the normal component of vorticity as = i3vx/t3y - av,/ax, (1) takes 
the form 

a 1 
a t  Re 
- v2v, = f, + - v4vz, 

c? 
where f ,  = AO,--div(i?) and f* = rot,(O). 

Here the incompressibility condition has already been taken into account. 

az 

The boundary conditions at the wall are 

a 
$IWUll = %lwull = $$uull = 0. 

(7) 

(9) 

The boundary conditions at the free surface are more complicated. The conditions on 
the tangential components of stresses (see (4)) can be expressed straightforwardly in the 
form 

where the subscript a again indicates horizontal components. The third boundary 
condition on v, is obtained through the relation for pressure at the surface. In our 
numerical scheme, the pressure computation is not required for time advancement. 
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Should data on pressure be needed for turbulent statistics, it can be calculated by two 
different but essentially equivalent ways. One can either use the equation for the 
normal component of velocity v, with the wall pressure values determined from an 
equation for a, v,, or one can use the equation for a, v, with the pressure corresponding 
to zero wavenumbers determined from the v,-equation. Therefore, it is convenient to 
impose the pressure boundary condition in the following form : 

Here the equation for av,/az is obtained from the equation for a,v,. 
Time stepping is carried with a semi-implicit scheme involving a Crank-Nicolson 

scheme for the viscous terms and an Adams-Bashforth scheme for the nonlinear terms. 
For the time advancement of surface height we use a Crank-Nicolson scheme for the 
normal velocity component and an Adams-Bashforth scheme for the convective term 
(Canuto et al. 1987). Equation (8) then reduces to 

(l-&vz)$n+I =+St<3jpQ-’)+ ( l+-V2 G e  ) ?y, (13) 

with the boundary conditions (9), (10). Equation (13) is solved by the Chebyshev-tau 
method for each horizontal Fourier component of the vorticity field. 

The fourth-order equation (7) is solved by splitting it into two second-order 
eauations 

(l-&V2)8”” = +St(3 f l - f l - l )+ ( 1 +-v2 E e  ) q5n 9 1  

vZV,n+1 = $n+l, I 
with the boundary conditions (9), (1 l), and the pressure boundary condition (12) which 
has the following form: 

a v n + l - a  Vn = - a 3 v n + l / 2 + ~ V 2 v n + l / 2 + ~ t V ~ ( g *  St h n + 1 1 2 - P e z t ) + ~ l l n - ~ l l n - 1 .  (15) 

,(v,”” +OF), An+’/’ = I 2(hn+1 + h”), g, = g + g*(kz + ki),  
ll = at(a, o, - v: +2). 

Re ‘ Re OL ’ z z  z z  

Here 
2 

vn+l/z  = 1 

The time advancement scheme for surface height is 

h - ~ S t ( ~ ~ + l +  0,”) -+St(3f;l” 

f h  = -(v,h(xu)). 

hn+l -  n - 1 

a 
ax, 

The system of coupled equations (14), (16) and (9), ( l l) ,  (15) is solved by the 
Chebyshev-tau method, in which the four boundary conditions are satisfied by means 
of a Green function technique. This system requires three Green functions Gi. The first 
two of them solve the equations 

1 --V2 Gl, = 0, V2Gl, = el, 2, ( 4, ) A  
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AGlI, = GllfS = G1lwall = 0; AG1lwall = 1 ; 

and 

In order to take into account the ‘tau correction’, i.e. numerical errors due to the 
finite number of retained Chebyshev polynomials, it is necessary to introduce a third 
Green function G, which satisfies the equation 

AG, = 0, 
with the boundary condition 

G~lwaii = 0; G,I, = 1. 

The third Green function G, is used to satisfy equations at the boundary points and the 
boundary conditions at the same time. 

To avoid aliasing errors involved in computing the nonlinear terms pseudo- 
spectrally, the usual $ dealiasing procedure is used. 

The computations reported here were performed on a 32 Intel iPSC/860 Hypercube. 
Parallelization of the algorithm is straightforward. The only part of the code that 
involves nodal communication is the Fourier transform, which is implemented by 
means of global asynchronous cross-processor transposition (Jackson, She & Orszag 
1991). Typical performance of this code on 32 nodes is 5.6 s per time step for 1283 
resolution and 1.4 s for the 64 x 64 x 128 resolution. 

The accuracy of the numerical code was examined in two different ways. First we 
implemented the numerical scheme for closed channel flow and analysed the time 
evolution of small-amplitude Orr-Sommerfeld modes. In all the tests performed both 
linear decay and growth rates were predicted with errors of less than 0.01 %. In the 
second set of tests, we analysed the decay in time of an infinitesimally small wave with 
given wavenumber k at the free surface. We measured the frequency Q(k) and the decay 
rate T(k) of the wave and compared them with the theoretical prediction for small- 
amplitude deep-water waves (Landau & Lifshitz 1987) : 

Q(k) = (gk + CT* k3)1’2 ; T(k) = 2vk2. (17) 

Equation (17) is valid when r % 52, which is always the case for our range of 
parameters. It was shown that the frequency Q(k) is reproduced by the numerical 
scheme very accurately (usually in the range of 0.1-0.01 %), provided the time step 6t 
is small enough O(k)  6t d 0.2. Our numerical time advancement scheme has second- 
order accuracy in time. Since r % 52 it is necessary to decrease 6t even further if we 
want to obtain the correct value for the decay rate of waves. It may be shown that 
significant numerical dissipation may be avoided if 6t52(k) < (T(k)/52(k))1/2 z (1, k)3/4.  
Under this restriction, which is generally not burdensome, we obtained a decay rate 
that differs from the theoretical one by only 0.1 %. In all our runs, we chose the time 
step to be small enough to correctly reproduce the dynamics of the surface waves. 

4. Wave spectra and turbulence statistics 
We consider a channel with depth H = 2 and horizontal dimensions L = TC with 

periodic boundary conditions imposed in the (x, y)-plane. Most of our calculations 
were performed with 64 x 64 resolution in the horizontal plane and 129 grid points in 
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FIGURE 1. Mean-velocity profile: z ,  = 0 corresponds to the rigid wall; the dashed line is the law 
of the wall u, = 5.5+2.51nz+; UmaX/u* = 18.6, Um,,/U,,, = 1.148. 

the normal direction. The emphasis of the present work is the assessment of the 
feasibility of our approach to compute free-surface flows based on linearization of 
boundary conditions, and, in particular, on the assessment of general capabilities of the 
numerical scheme. Therefore, we chose a relatively low resolution in order to be able 
to carry out more experiments and to cover a broader range of parameters. Several 
runs, however, were performed with 1283 resolution, and the results did not differ 
significantly from the lower-resolution case. 

We consider an experimental setup where turbulence is generated through an 
externally imposed pressure gradient in the x-direction which supplies the centreline 
mean velocity U. The initial velocity fields were obtained from the standard 
Orr-Sommerfeld instability modes for channel flow. The flux in the x-direction, i.e. the 
bulk mean velocity 

was fixed by adjusting the mean pressure gradient. The viscosity is chosen to be 
v = 1/3000 and the maximum mean velocity U,,, x 0.765. The Reynolds number 
defined through the maximum mean velocity is Re x 4560. The wall-shear velocity is 

U* = ( ~ ~ , ~ ~ / p ) ' / ~  = (vi3~,/i3~l,,~~)~/~ x 0.041 

so that Re, = ( u * H ) / v  x 250. 
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FIGURE 2. Root-mean-square velocity fluctuations normalized by the wall shear velocity : \ 
x , uLrnS, 0, u ; ~ ~ ;  a, uLrns. (a) Global coordinates; (b)  wall coordinates. 

Under these conditions, the Kolmogorov dissipation wavenumber estimated via the 
energy dissipation rate at the centreline, € z 5 x lop5 is k ,  = (€/v3)l/* z 35 and is 
smaller than the maximum wavenumber in the (x, y)-plane. This means that turbulence 
in the bulk of the channel and near the rigid wall is well resolved. We believe that the 
near-free-surface region is also resolved properly. Indeed, the Froude number 4 in our 
runs varied from 0.1 to 0.6, and the corresponding boundary layer was thick enough 
to contain several Chebyshev collocation points (although 1, is less than the 
Kolmogorov dissipation scale). Both criteria ( 5 )  and (6) hold in this case and the 
linearization of the boundary conditions is well based. 

4.1. ChannelJow turbulence statistics 
The mean velocity profile is shown in figure 1, where the velocity is normalized by the 
wall-shear velocity u* and the distance from the rigid wall z+ is measured in wall units 
z+ = zu*/v. As expected the mean velocity profile obeys the law of the wall 
u+ = 2.5 Inz, + 5.5 starting from approximately z+ = 30. Typically, the mean velocity 
is slightly larger than one would expect from the law of the wall just near the free 
surface, in accordance with the data of Nezu & Rodi (1986). Such deviations are likely 
to result from the effects of the free surface. The data plotted in figure 1 correspond to 
a typical run with Froude number 4 z 0.55. 
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FIGURE 3. Reynolds stress - (v, v,): (a) global coordinates; (b) wall coordinates. (c) Correlation 
coefficient - (v, v,)/v;msv:ms in global coordinates. 

Turbulence intensities and Reynolds shear stress normalized by the wall-shear 
velocity are shown in figures 2 and 3, respectively. The data on r.m.s. vorticity are 
shown in figure 4. Near the rigid wall and close to the centreline, the profiles are in good 
agreement with the DNS data on rigid-wall channel flow (Kim et al. 1987) and in 
reasonable agreement with experimental data (Kreplin & Eckelmann 1979). For 
example, the intensity of streamwise turbulent fluctuations peaks at z+ z 13. We have 
compared our measurements for the skin friction coefficient C, = T ~ ~ ~ ~ / $ U ~  with the 
experimental correlations proposed by Dean (1978). The friction coefficient in our case 
is found to be C, z 7.6 x which agrees well with Dean's formula 
C, z 0.073Re;0.25 z 7.7 x where Re, = 2HU,/v z 8000. The ratio U,,,/U, is 
1.148, also in a good agreement with Dean's data, U,,,/U, = 1.28Re;'.O1l6 = 1 . .  153 
The comparison with available data on turbulence intensities in open-channel flow 
(Nezu & Rodi 1986) also shows good agreement. The streamwise r.m.s. velocity at the 
free surface in wall units is roughly 1 in our study and 0.8-1.2 in the experiments, and 
the spanwise r.m.s. velocity is roughly 0.7 and 0.65, respectively. 

It should be mentioned that within the feasible range of Froude numbers (5 ) ,  typical 
mean flow profiles do not change significantly with the flow Froude number. 
Turbulence intensities and r.m.s. vorticity data are also weakly sensitive to the Froude 
number. We may conclude that for small Froude numbers it is reasonable to consider 
even the limiting case 4 = 0. Such flow in which the gravitation constant g is infinite 
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0 50 100 150 200 250 
z+ 

FIGURE 4. Root-mean-square vorticity fluctuations normalized by the mean shear : 
x , w, vlu;;  0, wy v / u t  ; A, w, v/u;  in wall coordinates. 

can be visualized as corresponding to a half-channel flow with two rigid walls? where 
inviscid no-stress boundary conditions are imposed at the wall corresponding to the 
'free surface' (Hunt & Graham 1978). The presence of such a no-stress wall is the 
dominant effect at small Froude numbers. In this sense, the free surface responds 
nearly linearly to the bulk turbulence and does not lead to significant changes in the 
fluid flow near the free surface compared with the case = 0. The dependencies on the 
flow Froude number are only significant in the near-free-surface region of size 
l ,  = (2~/52,)'/~, where 52, is some characteristic frequency of turbulence at the free 
surface. These effects are discussed further in the next Section. 

The most important influence of the free surface is that the fluid motion near the free 
surface is quasi-two-dimensional. The fluctuations of the velocity normal to the surface 
are substantially smaller than the ones in horizontal directions. The only component 
of vorticity that is large near the free surface is that normal to the free surface. We may 
expect that the most important excitations of the free surface come from vortex tubes 
attached to the free surface at one end, produced by small-scale eddies of nearly two- 
dimensional turbulence. In this case, an inverse energy cascade may take place that 
may facilitate the formation of large vortex tubes near the free surface. 

Using data on the Reynolds stress and mean velocities, it is possible to obtain 
distributions of eddy viscosity in open-channel flow. A typical profile of eddy viscosity 
is plotted in figure 5 at 4 = 0.55. Such data may be useful for modelling free-surface 
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FIGURE 5. Distribution of eddy viscosity veddY/vH+ in open-channel flow: x , measurements; 
_-_ , (18); -, (19) model. 

phenomena. Although detailed discussion of this problem is left for a future paper, 
some preliminary remarks are appropriate here. 

First, we compared our data with the empirical formula 

A comparison of (18) with experimental data for open channel flow was made by Ueda 
et al. (1977). Equation (18) implies that the law of the wall is valid throughout the 
channel, which is certainly not true, at least near the rigid wall. From figure 5,  we see 
that the measured distribution is rather well described by (18) near the free surface. 

We have also tried several heuristic formulae which relate eddy viscosity to the 
turbulent kinetic energy K and the energy dissipation rate 8. Recent developments in 
renormalization group turbulence modelling suggest that the mean rate-of-strain 
dependence of eddy viscosity is also important (Yakhot et al. 1992). The best fit to the 
present data was found to be given by the following expression: 

K 2  2 
d 1 +(T/a)" ' eddy  = - 

where 
du, K 

T = x d .  



12 V. Borue, S.  A .  Orszag and I. Staroselsky 

1.6 

1.4 

1.2 

1 .o 

0.8 

-1.0 -0.5 0 0.5 1 .o 
z 

t 1 

-1.0 -0.5 0 0.5 1 .o 
z 

FIGURE 6. (a) Root-mean-square pressure fluctuations normalized by the wall shear velocity 
p,, , /ui  ; (b) ratio of root-mean-square pressure fluctuations to the mean kinetic energy. 

Using turbulent characteristics K and d measured from the simulations, we find that 
the best choice of numerical constants is C, = 0.09,a = 3.0. The dimensionless 
parameter 7 is the ratio of turbulent to mean strain time scales. Near the rigid wall 7 
is large ( M 25); in the log-layer of the channel 7 is approximately constant (between 3 
and 4); near the free surface 7 approaches zero. As the results plotted in figure 5 
suggest, the interpolation formula (19) holds rather well near the rigid wall. Close to 
the free surface, the eddy viscosity given by (19)  differs significantly from the measured 
data, owing to the decrease of energy dissipation rate caused by the zero-stress 
boundary conditions. This fact implies that the standard K-€ models should be 
significantly modified near the free surface. 

4.2. Near-free-surface behauiour 

We find that the viscous term in the boundary condition (12) is numerically small and 
prms M gh,,,, where h,,, = (h2)'12 is the r.m.s. surface height. On the other hand, the 
r.m.s. pressure at the free surface prmS M i(u:) is approximately independent of g (see 
figure 6). Therefore, the following approximate relation is well satisfied : 

hrms KfsIg, (20) 
where Kf,  is the mean kinetic energy at the surface. 

Another observation is that the root-mean-square fluctuations of the streamwise and 
spanwise velocity components, as well as the normal component of vorticity, are 
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FIGURE 7. Near-free-surface behaviour of flow characteristics. The limiting operator 9 is applied to : 
x , E ;  A, (d(v,v,)/dz); 0, (dv,/dz); 0, w;m;. The ratios K(zf,)/K(0) and w~ms(z ,s) /w~ms(0)  are shown 
by * and 0,  respectively. The solid line is e-zfsiA with h z 0.08H. zfs is the distance from the free 
surface. 

practically independent of g, whereas v,l,,, - l/g. The r.m.s. values of streamwise and 
spanwise components of vorticity are also inversely proportional to g .  The scaling of 
u, with g and (20) suggest that there exists a characteristic frequency of surface height 
fluctuations SZhlrms E ozlrrns/hrms which is approximately constant in the range of 
Froude numbers considered. This frequency relates to the characteristic turnover times 
of the largest turbulent eddies. Within the viscous sublayer, the turbulent kinetic energy 
K was observed to be practically independent of the distance from the free surface. 
Therefore, the Neumann boundary condition aK/az = 0 seems to be relevant for 
modelling free-surface phenomena. 

Most of the averaged quantities or their derivatives vary smoothly in the middle of 
the channel but vary nearly exponentially near t_he free surface. To analyse their 
behaviour, it is convenient to define an operator 9 of the following form: 

The operator @ acts on functionsJT_zf,), where z f s  designates the distance from free 
surface. According to the definition F(A0)) = 1 for any$ For functions which fall off 
exponentially away from the free surface, @(f(zf,)) E exp ( -zfs/A).  In figure 7, we 
show the near-free-surface behaviour of different flow characteristics analysed by 
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means of the limiting operator @. Plotted in figure 7 are the mean rate of strain 
(dv,/dz), the energy dissipation rate 8, the horizontal components of r.m.s. vorticity 
wLmi, as well as the z-derivatives of the Reynolds stress (d(u,u,)/dz). Most of these 
characteristics change exponentially near the free surface as - C, - C, exp (-z,,/h) 
with approximately the same exponent h x 0.08H. If we identify h with a depth of 
some skin layer, a characteristic excitation frequency at the free surface can be 
estimated as 51, x 2v/h2. In our setup, such an estimation gives 51, w 0.42. It is shown 
later that this frequency nearly matches the directly measured characteristic frequency 
of surface wave motion. 

As may also be seen from figure 7, the ratio of the turbulent kinetic energy 
K(z,,)/K(O) and the ratio of r.m.s. normal vorticity fluctuations wZmS(~fs)/w~ms(0) are 
approximately constant. 

4.3. Surface wave spectra 
To begin, we analysed the dispersion relation of surface waves. Since the boundary 
conditions are linearized, we expect the dispersion relation to be given by (17). Let us 
define two correlation functions of some variable q(x, t) : 

U,(k) = (dx ,  t) d o ,  0) exp (ikx) dx, (22) 

(23) 

s 
s S,(k, 51) = (q(x, t) q(0,O)) exp (ikx + i51t) dx dt 

so that U, = (d51/2n) S,. Here k stands for the wave vector in the horizontal plane 
and all quantities are evaluated at the free surface. The correlation functions U, are 
directly measured in our numerical experiments, whereas the evaluation of the 
functions S, requires rather expensive time averaging. In our case, a linearized version 
of (3) yields 

and for the equal-time spectral densities: 

In the low-k region (k G 
dominated by the oscillatory part of dispersion relation. Using (17), we obtain 

the singularities of the correlation function s h  are 

At this point, it is important to mention that the spectra Uh and U, themselves may 
be far from those corresponding to the linear surface waves problem. Also the relation 
(26) does not require potentiality of the surface flow. The only assumption that was 
used in the derivation of (26) is that the Green function for the equation for normal 
velocity has a pole at the characteristic frequency given by (17), whereas the dissipative 
term in the dispersion relation is negligible. Such an assumption may become invalid 
owing to the effects of turbulence. Also, the effects of the mean flow in our case can, 
in principle, complicate the dispersion relation structure. The ratio 
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FIGURE 8. Two-dimensional spectrum of characteristic surface frequencies. Lines of constant 
log (Q,(k)) as the function of kJk,, k,/k, are shown. 

may be called a characteristic frequency of surface height excitations at wavenumber 
k. Measurements of the spectra (27) can serve as a diagnostic tool to analyse the 
properties of near-free-surface turbulence. 

In figure 8, we show the two-dimensional spectrum of the logarithm of characteristic 
wave frequencies. The shape of the spectrum is practically isotropic in the (kz, k,)-plane 
so that the dispersion relation can be well represented by the ' one-dimensional' 
spectrum shown in figure 9. The one-dimensional spectrum is obtained from the 
isotropic two-dimensional spectrum by summing all the UJk) with k on a circle of a 
given radius (k(. When k/k, 3 1, the measured dependence SZ,(k) is well described by 
(17). At smaller wavenumbers, the function SZ,(k) deviates significantly from (17) and 
reaches an approximately constant value a,. This behaviour of the characteristic 
frequency reflects the influence of ' bottom-generated ' turbulence upon the surface 
wave behaviour. The wave spectra in the low-k region k/k, < 1 are forced by the 
turbulence. The frequency 0, depends on the flow Reynolds number only and 
characterizes the frequency of the attached vortex tubes. In the turbulence dissipation 
range, nonlinear effects are small and surface waves can be considered as freely 
evolving. It should be noted that the numerical value of the limiting frequency 
Q, = O(k+O) z 0.5 is close to the estimate obtained in $4.2. 

The spectra of surface height h(k), and velocity components vz, Jk), v,(k) are also 
isotropic in wavenumber space. The one-dimensional spectra are plotted in figure 10. 
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FIGURE 9. Spectra of characteristic surface frequencies Q,(k) as a function of klk,  for 4 z 0.55 
(solid line). The dashed line is Q(k) = (gk)1'2. 

The spectral behaviour of the surface correlation function differs significantly from the 
Phillips' surface wave spectral laws l/k3 (Phillips 1977) or l/k7I2 (Phillips 1985). In fact, 
the spectral index is between one and two. This fact is not very surprising, because 
we are mostly concerned with spectra of small surface waves forced by the bulk 
turbulence. Linearization of the free-surface boundary definitely contributes to this 
discrepancy. Surface waves in our problem play the role of a diagnostic tool that 
enables us to measure spectral characteristics of bulk turbulence. On the other hand, 
Phillips' spectrum may be observed in the so-called wave saturation range for waves in 
the ocean, where nonlinear wave interaction is essential. Our data are in reasonable 
agreement with the low Froude number data of Brumley & Jirka (1987) where the 
spectra of free-surface velocity fluctuations were measured for the case of grid- 
generated turbulence with a grid at the bottom of the tank. 

For all Froude numbers that we considered, the characteristic surface frequencies SZ, 
were lower than the free-surface frequencies (17). When the gravitational constant g 
decreases, these frequencies match and resonant excitations of the surface waves occur. 
This leads to wave breaking phenomena. Unfortunately, in this regime our numerical 
algorithm breaks down owing to incorrect free-surface boundary conditions. 
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FIGURE 10. One-dimensional spectra of: surface height correlator Uh(k)/h:m8 (-) ; the normal 
velocity at the surface correlator UJk)/(u:) l f8  (----); the tangential velocity at the surface 
correlator 10-lU,Z,y(k) / (u~,Zl) l fs  (--.--.-), all as a function of k /k , .  The dotted line is l/k5I3. 

4.4. Externally generated turbulence 
Here we discuss some preliminary results concerning simulation of turbulence 
generated by external stresses and pressure, as a model of wind-generated surface wave 
phenomena. So far, we have considered only a few simple cases where the spectra of 
external stresses are far from those experimentally observed. The generalization of our 
approach to include external stresses of different shapes and angular dependencies is 
straightforward. 

We have chosen an external stress oscillating in time and taking non-zero values only 
at the lowest wavenumbers (k, = k, = 2 in our geometry): 

(28) 
In real open-surface flows, the external stress tensor may contain diagonal components 
(the pressure p,,.) as well as non-diagonal components (the strain 7,,J. The external 
strain can also have divergence-free components Tot and vorticity-free components 
Wdiv. The corresponding boundary conditions have the form (lo), (1 1). 

External perturbations have a finite penetration depth for vorticity components of 
this perturbation (Landau & Lifshitz 1987): 

A cos (k,x +n, t + $6,) + A  cos (k ,y  +Of t + $6,). 

1, = (2v/52,)1'2. (29) 
In our study, the characteristic perturbation frequency can be identified with 
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FIGURE 1 1  (a,b). For caption see facing page. 
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FIGURE 1 1 .  Root-mean-square velocity and vorticity fluctuations normalized by their free-surface 
r.m.s. values of the corresponding horizontal components : -, tangential velocity ; ----, normal 
velocity; ----, tangential vorticity; -.-.- , normal vorticity. (a) Externally applied pressure ; 
(b) divergence-free external stress; (c)  curl-free external stress; ( d )  Re, = 5 .  
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SZ, = min (SZzn, m,>, where QKin is the lowest eigenfrequency of the free surface (see 
(17)). The characteristic velocity at the free surface for sufficiently small Froude 
numbers is 

where 7 f n  is the stress at the free surface. The Reynolds number in the near-surface 
region can be defined as 

Re, = min (T u*H u* 

It follows from the definition (31) that when 1, < H ,  externally generated perturbations 
do not reach the bottom and H is not the relevant parameter. In all our numerical 
experiments, the wave amplitude was smaller than the penetration length 1, thus 
justifying the applicability of the linearized boundary condition. 

As the simplest example, consider waves generated only by an oscillating external 
pressure. The frequency of the external perturbation was chosen so that Re, w 0.1 and 
l,/H z 0.05. The calculated mean-squared velocities and vorticities normalized by 
their free-surface values for corresponding horizontal components are shown in figure 
11 (a). As may be seen from figure 11 (a), both the r.m.s. velocity and vorticity decay 
away the free surface (at z = 1) according to the exponential law exp (- A( 1 - z)) .  It was 
checked that the decay exponent h for the velocity is equal to the force wavenumber 
k, = k ,  = 2, and the decay exponent for the tangential vorticity component is equal to 
h = l//,, as one would expect on the basis of linear theory (Landau & Lifshitz 1987). 
It is interesting to note that, near the rigid wall, the tangential vorticity component 
increases with approximately the same rate as it decays off the free surface. 

As the next two examples, we consider generation of waves by an external oscillating 
strain of the form (28) with Re, w 1.5 and l,/H z 0.05. In the first case, a divergence- 
free stress Wot was applied. In the second case, a purely curl-free stress Wdi, is applied. 
The corresponding profiles of turbulence characteristics are shown in figures 11 (b) and 
11 (c).  The near-centreline behaviour of r.m.s. velocities and vorticities is similar to the 
previous example. The substantial difference is that the free-surface r.m.s. values of the 
normal velocity component are much smaller than the horizontal ones. The 
corresponding intensity ratios are approximately 0.33 for the curl-free stress and 0.05 
for the divergence-free stress. The explanation is that the externally applied strain 
mostly transfers energy into the tangential velocity components, creating large 
vorticity at the free surface. When the stress is divergence-free, the normal vorticity 
component is much larger than in the case of curl-free stress, thus leading to an 
effective attenuation of surface waves. It is curious to note that in the case of 
divergence-free stress, the maximum of the intensity of the normal velocity component 
is at a depth - 1,. 

In the cases considered above, the Reynolds number Re, was rather slow and in fact 
the flow was only marginally turbulent. We have also performed several runs at higher 
Re,. Data obtained in a typical run corresponding to Re, = 5 are plotted in figure 
11 (d) .  The external stress was composed of a mixture of different components. The 
shapes of the velocity spectra suggest that the flow with such a seemingly small value 
of Re, exhibits behaviour typical of well-developed turbulent flows. As can be seen 
from figure 11, the profiles of r.m.s. velocity and vorticity in the region far from the 
surface are similar to those obtained at lower Reynolds numbers (see figure 11 a-c). It 
might be concluded that the specific structure of externally imposed stresses mostly 
influences the near-free-surface flow pattern, and plays a rather minor role elsewhere. 

To have an impression of how the external stress at the free surface influences the 
mean velocity profile in open-channel flow, computations with an external stress 
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FIGURE 12. Mean-velocity profile; open-channel flow with oscillating external stress at the free 
surface. The dashed line is the law of the wall u, = 5.5+2.51nz+. 

constant in space and oscillating in time were performed. The oscillation frequency was 
chosen to be only slightly lower than and the magnitude of the stress was 
approximately 20 % of its value at the rigid wall. The mean velocity profile for this case 
is shown in figure 12. It may be observed that the mean velocity profile is substantially 
changed near the free surface. Such details of near-free-surface behaviour of mean flow 
characteristics are treated well by our code and should be studied further. 

5. Discussion 
The main goal of this work was to test the feasibility of direct numerical simulation 

of free-surface flows at Reynolds numbers corresponding to state-of-the art simulations 
of wall-bounded turbulence. Therefore, we have concentrated upon the simplest flows 
with the simplest experimental configuration. There are additional phenomena which 
can be incorporated into our computational scheme rather straightforwardly, including 
transport of passive scalars, thermal stratification in the Boussinesq approximation, 
and internal waves in the ocean. Our approach can also be extended to study flows in 
complex geometries with basically the same domain decomposition spectral-element 
techniques that are now used for wall-bounded flows. 

Our first test case, where the turbulence was generated ‘from below’, i.e. by the shear 
production of energy at the rigid wall, is relevant to the problem of diagnosing interior 
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turbulence properties through the observation of the statistics of waves at the surface. 
The influence of particular mechanisms of energy production upon spectra of the 
surface height deserve further investigation. The second case where the turbulence is 
generated by stresses at the surface is relevant to the problem of turbulent mixing in the 
upper ocean. In future research, it will be interesting to consider more realistic spectra 
of the externally imposed stresses, i.e. to take into account spatial, angular and 
temporal variability of the stress. Another possible extension of our approach, which 
seems to be potentially important for applications in physical oceanography and 
atmospheric sciences, would be to take into account non-zero viscosity in the adjacent 
media and thus consider the air-sea interaction. This would provide insight into the 
mechanisms of wind-generated waves, turbulent spectra within the air surface 
boundary layer, the phenomena of bursting at the air-sea interface and other 
problems. 

We close by summarizing issues that are left open here. First, we do not have any 
comprehensive theoretical explanation for the scaling behaviour at large interaction 
times, an extremely challenging and important qustion. Next, the Reynolds numbers 
achievable in our computations are several orders of magnitude below that of real 
geophysical flows, so that there is a need for different kinds of modelling. We believe 
that the large-eddy simulation schemes that can be used here should be similar to 
those used for wall-bounded turbulence. At the same time, the direct simulation results 
can provide the necessary database for modelling of near-free-surface boundary layers, 
particularly in K-8 and algebraic model formalisms. 

High-resolution simulations of finite-amplitude surface waves interacting with fully 
developed turbulence are not yet possible. An alternative approach to the simulation 
of free-surface flows with high-amplitude surface waves is to map the physical domain 
onto the computational domain --iH < z < i H  and then to apply Chebyshev spectral 
methods. Any use of a conformal mapping formalism is obviously restricted to the two- 
dimensional case and thus does not address the real physics. In any case, wave breaking 
phenomena, which represent the key feature of nonlinear surface waves interaction and 
are responsible for most of the dissipation within viscous sublayers in real fluids, are 
unlikely to be captured by mapping techniques. Our formulation of the problem, which 
neglects nonlinear self-interaction of waves and retains the turbulence, is an effective 
approach which is self-consistent and feasible for at least one class of interesting 
problems. 
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